6. Aufgabenblatt: Analysis 2

Lehrkräfteweiterbildung, 14 Q, Winter 2025/26 Dozent: Hans-Joachim von Höhne

Aufgabe 6.1 Zeigen Sie: für alle $\bar{x}, \bar{y}, \bar{z} \in \mathbb{R}^n$ gilt die *Umgekehrte Dreiecksungleichung*:

$$|||\bar{x} - \bar{z}|| - ||\bar{y} - \bar{z}||| \le ||\bar{x} - \bar{y}||$$

Aufgabe 6.2 Sei $D = \{(x,y) \in \mathbb{R}^2 \mid xy \neq 0\}$ und $f: D \longrightarrow \mathbb{R}$ die Abbildung

$$f(x,y) = \frac{xy}{|xy|}$$

Zeigen Sie:

- 1) Die Punkte $\bar{a}=(0,0),\ \bar{b}=(1,0)$ und $\bar{c}=(0,1)$ liegen im Abschluss \overline{D} von D.
- 2) Die Grenzwerte von f bei \bar{a}, \bar{b} bzw. \bar{c} existieren nicht.

Aufgabe 6.3 Sei $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ die Funktion

$$f(x,y) = \begin{cases} y & \text{falls } x \ge 0, \\ -y & \text{falls } x < 0. \end{cases}$$

Untersuchen Sie, ob f in den Punkten $\bar{a}=(0,0)$ bzw. $\bar{c}=(0,1)$ stetig ist.

 $\mathbf{Aufgabe}\ \mathbf{6.4}\ \mathsf{Seien}\ f,g:I\!\!R^2\longrightarrow I\!\!R$ die Funktionen

$$f(x,y) = \begin{cases} x^2/(x^2 + y^2) & \text{für } (x,y) \neq (0,0), \\ 0 & \text{für } (x,y) = (0,0), \end{cases}$$

$$g(x,y) = y f(x,y)$$
.

Zeigen Sie:

- 1) f ist in den Punkten $(x,y) \neq (0,0)$ stetig, und im Punkt (0,0) nicht stetig.
- 2) g ist (in allen Punkten) stetig.